This note is appendix IRPN
of RPN 35 and is not
included here.
RPN 34

PHYSICS INTERNATIONAL INTERNAL REPORT NO. 55

AUTHOR: John Creedon

July 16, 1965

SUBJECT: Derivation of Formulas for Determining Radiation Pattern

from Four-Point Sources

The formulas for determining the radiation pattern from a four-source array are derived with reference to the diagrams of Figures 1, 2, and 3. The following symbols are used:

Definition of Symbols

$^{\mathrm{s}}$ o	Center of source array
s ₁ , s ₂ ,	Source points
s ₃ , s ₄	e e e e e e e e e e e e e e e e e e e
S	Diagonal distance across array
£.	Distance from source plane to plane at which radiation is calculated
P ₁ , P ₂ , P ₃ , P ₄	Points formed by extension of electron beam direction through s ₁ , s ₂ , s ₃ , s ₄ to target plane
P _O	Center of points p ₁ , p ₂ , p ₃ , p ₄
θ	Angle of line $s_1 p_3$ with respect to line $s_1 p_1$; $\theta = \tan^{-1} \frac{s}{\ell}$
x-axis	Axis through p ₁ , p ₃
p	Point on x-axis for which sum of radiation from s ₁ , s ₂ , s ₃ , s ₄ is calculated
x	Distance from center of target, plane to p
01	Angle between s_1p_1 and s_1p
θ_2	Angle between s_3p_3 and s_3p

УI	Distance from p ₁ to p
y ₂	Distance from p ₃ to p
\mathbf{z}_1	Length of line sop
$\alpha_{ ext{I}}$	Angle between line sop and line sopo
ς_1	Distance from s_2 to $p = s_4$ to p
Υ1	Angle between s2p and sop
β	Angle between electron beam direction at s ₂ and line from s ₂ to p
$R_{\ell\beta_1}$	Relative radiation intensity at angle $\beta_{\mathbf{l}}$ at distance ℓ
$R_{\zeta_1\beta_1}$	Relative radiation intensity at angle β_l at distance ζ_l
x'-axis	Axis through poat 45 deg to x-axis
p [†]	Point on x'-axis at which the radiation intensity is calculated
\mathbf{x}^{\dagger}	Distance from po to p'
y ₁ '	Distance from intersection of line p_1p_4 and x' -axis to point p'
y ₂ ,	Distance from intersection of line p_2p_3 and x' -axis to point p'
\mathbf{q}_1	Point midway between s ₁ and s ₄
\mathbf{q}_2	Point midway between s ₂ and s ₃
z_1^{-i}	Distance from q ₁ to p'
Z_2^{-1}	Distance from q ₂ to p'
$-\infty$	Angle between line through \mathbf{q}_1 parallel to electron direction and line from \mathbf{q}_1 to \mathbf{p}^t
α_2^{r}	Angle between line through q_2 parallel to electron direction and line from q_2 to p^\prime

To calculate radiation intensity along the x-axis the procedure used was to calculate α_1 from Equation 1, γ_1 from Equation 2, and β_1 from Equation 3. R_{β_1} was taken from the curve in Figure 4 and the value of $R_{\zeta_1\beta_1}$ was calculated from Equation 4. If the radiation intensities at p from the four-source points s_1 , s_2 , s_3 , s_4 , are respectively, R_1 , R_2 , R_3 , R_4 , then

$$R_{\zeta_1\beta_1} = R_2 = R_4$$

For intensities R_1 and R_3 from s_1 and s_3 , the following formulas apply:

$$\theta_1 = \tan^{-1} \frac{y_1}{\ell}$$

$$\theta_2 = \tan^{-1} \frac{y_2}{\ell}$$

Values of relative intensity were taken from Figure 4 for θ_1 and θ_2 , and multipled by $\cos^2\theta_1$ and $\cos^2\theta_2$ to give the intensities R_1 and R_3 . The total radiation intensity at p is the sum of R_1 , R_2 , R_3 , and R_4 .

The intensity along the x^1 -axis is calculated as follows:

$$\tan \alpha_1' = y_1' / \ell$$

$$\tan \gamma_1' = (1/2\sqrt{2})(s/\ell)\cos \alpha_1'$$

$$\cos \beta_1' = \frac{2\sqrt{2}\sin \gamma_1'}{s/\ell}$$

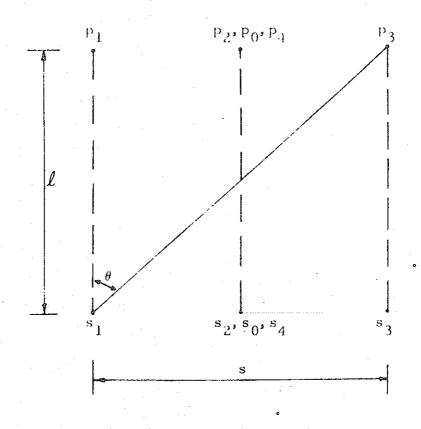
$$R_{\zeta_1 \beta_1}' = R_{\ell \beta_1}' \cos^2 \beta_1'$$
(5)

Equation 5 gives the radiation intensity from points s_1 and s_4 at p'

$$R_{1}^{1} = R_{4}^{1} = R_{\zeta_{1}\beta_{1}}^{1}$$

$$\tan \alpha_{2}^{1} = y_{2}^{1/\ell}$$

$$\tan y_{2}^{1} = (1/2\sqrt{2})(s/\ell) \cos \alpha_{2}^{1}$$


$$\cos \beta_{2}^{1} = \frac{2\sqrt{2} \sin y_{2}^{1}}{s/\ell}$$

$$R_{\zeta_{2}\beta_{2}}^{1} = R_{\ell\beta_{2}}^{1} \cos^{2} \beta_{2}^{1}$$
(6)

Equation 6 gives the radiation intensity from points s₂ and s₃ at p'

$$R_2^{t_1} = R_3^{t_1} = R_{\zeta_2 \otimes 2}^{t_1}$$

The (otal radiation intensity at p is $R_1^{-1} + R_2^{-1} + R_3^{-1} + R_4^{-1}$

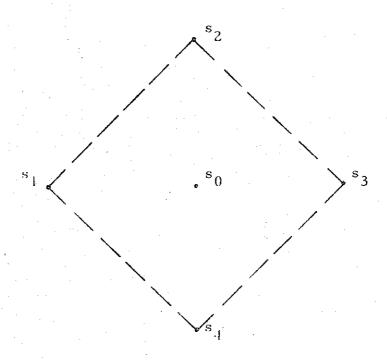


Figure 1. Scheme for Calculation of Four-Point Source Radiation Pattern

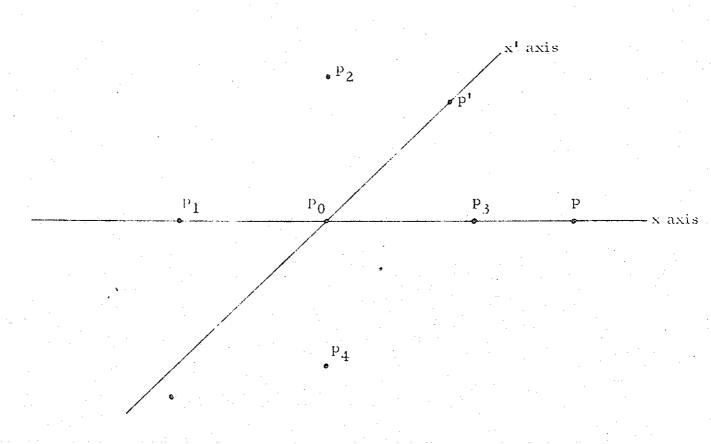


Figure 2. Calculation of Four-Point Source Radiation Pattern Along Two Axes (x and x')

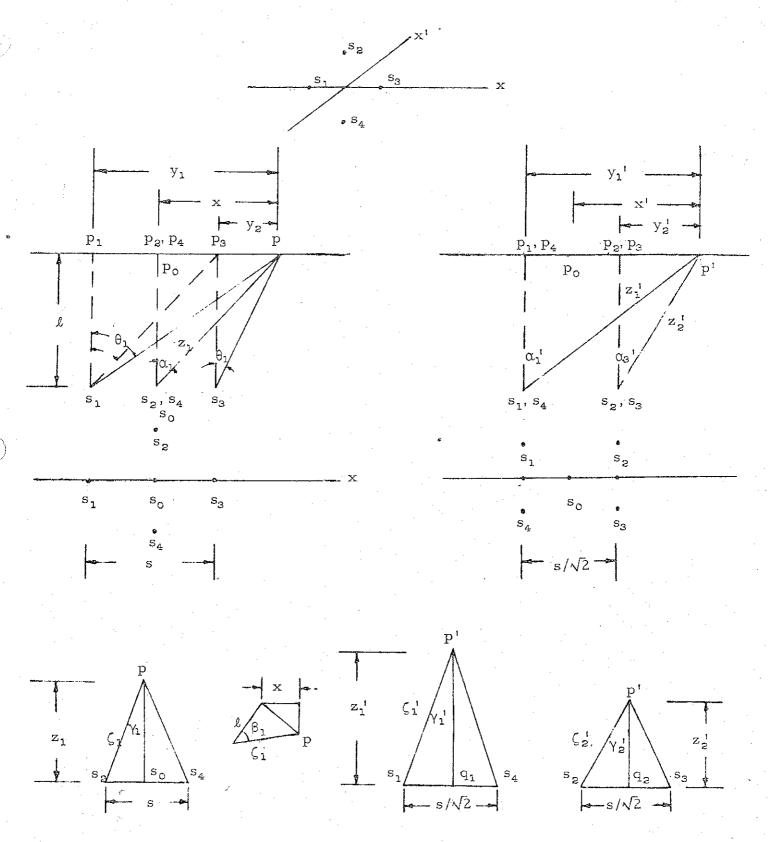
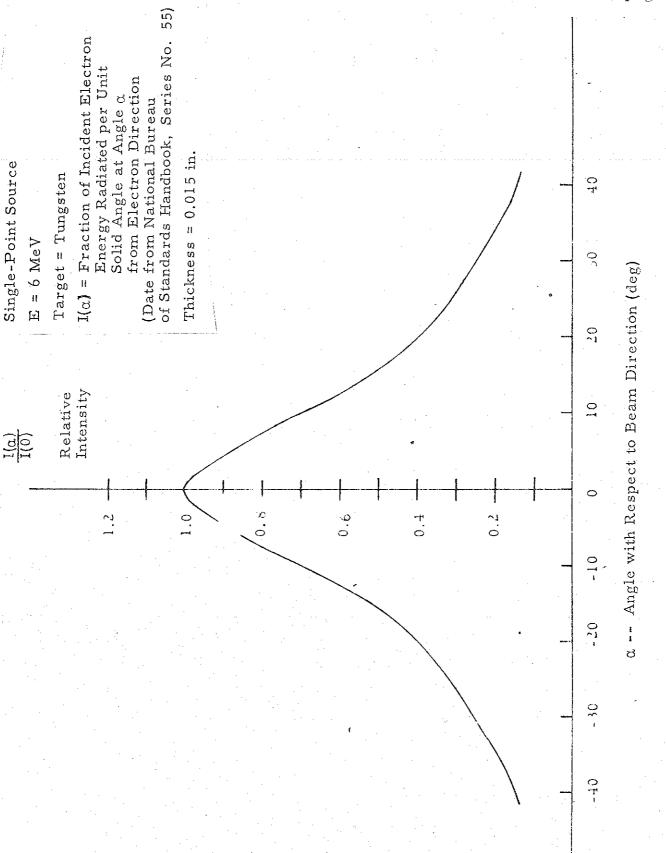



Figure 3. Diagrams for Calculation of Radiation Patterns of of Four-Point Sources

1250

Figure 4. Plot of Bremsstrahlung Intensity, Single-Point Source