This note is appendix IRPN of RPN 35 and is not included here. RPN 34 PHYSICS INTERNATIONAL INTERNAL REPORT NO. 55 AUTHOR: John Creedon July 16, 1965 SUBJECT: Derivation of Formulas for Determining Radiation Pattern from Four-Point Sources The formulas for determining the radiation pattern from a four-source array are derived with reference to the diagrams of Figures 1, 2, and 3. The following symbols are used: ## Definition of Symbols | $^{\mathrm{s}}$ o | Center of source array | |---|---| | s ₁ , s ₂ , | Source points | | s ₃ , s ₄ | e e e e e e e e e e e e e e e e e e e | | S | Diagonal distance across array | | £. | Distance from source plane to plane at which radiation is calculated | | P ₁ , P ₂ , P ₃ , P ₄ | Points formed by extension of electron beam direction through s ₁ , s ₂ , s ₃ , s ₄ to target plane | | P _O | Center of points p ₁ , p ₂ , p ₃ , p ₄ | | θ | Angle of line $s_1 p_3$ with respect to line $s_1 p_1$;
$\theta = \tan^{-1} \frac{s}{\ell}$ | | x-axis | Axis through p ₁ , p ₃ | | p | Point on x-axis for which sum of radiation from s ₁ , s ₂ , s ₃ , s ₄ is calculated | | x | Distance from center of target, plane to p | | 01 | Angle between s_1p_1 and s_1p | | θ_2 | Angle between s_3p_3 and s_3p | | УI | Distance from p ₁ to p | |------------------------|---| | y ₂ | Distance from p ₃ to p | | \mathbf{z}_1 | Length of line sop | | $\alpha_{ ext{I}}$ | Angle between line sop and line sopo | | ς_1 | Distance from s_2 to $p = s_4$ to p | | Υ1 | Angle between s2p and sop | | β | Angle between electron beam direction at s ₂ and line from s ₂ to p | | $R_{\ell\beta_1}$ | Relative radiation intensity at angle $\beta_{\mathbf{l}}$ at distance ℓ | | $R_{\zeta_1\beta_1}$ | Relative radiation intensity at angle β_l at distance ζ_l | | x'-axis | Axis through poat 45 deg to x-axis | | p [†] | Point on x'-axis at which the radiation intensity is calculated | | \mathbf{x}^{\dagger} | Distance from po to p' | | y ₁ ' | Distance from intersection of line p_1p_4 and x' -axis to point p' | | y ₂ , | Distance from intersection of line p_2p_3 and x' -axis to point p' | | \mathbf{q}_1 | Point midway between s ₁ and s ₄ | | \mathbf{q}_2 | Point midway between s ₂ and s ₃ | | z_1^{-i} | Distance from q ₁ to p' | | Z_2^{-1} | Distance from q ₂ to p' | | $-\infty$ | Angle between line through \mathbf{q}_1 parallel to electron direction and line from \mathbf{q}_1 to \mathbf{p}^t | | α_2^{r} | Angle between line through q_2 parallel to electron direction and line from q_2 to p^\prime | To calculate radiation intensity along the x-axis the procedure used was to calculate α_1 from Equation 1, γ_1 from Equation 2, and β_1 from Equation 3. R_{β_1} was taken from the curve in Figure 4 and the value of $R_{\zeta_1\beta_1}$ was calculated from Equation 4. If the radiation intensities at p from the four-source points s_1 , s_2 , s_3 , s_4 , are respectively, R_1 , R_2 , R_3 , R_4 , then $$R_{\zeta_1\beta_1} = R_2 = R_4$$ For intensities R_1 and R_3 from s_1 and s_3 , the following formulas apply: $$\theta_1 = \tan^{-1} \frac{y_1}{\ell}$$ $$\theta_2 = \tan^{-1} \frac{y_2}{\ell}$$ Values of relative intensity were taken from Figure 4 for θ_1 and θ_2 , and multipled by $\cos^2\theta_1$ and $\cos^2\theta_2$ to give the intensities R_1 and R_3 . The total radiation intensity at p is the sum of R_1 , R_2 , R_3 , and R_4 . The intensity along the x^1 -axis is calculated as follows: $$\tan \alpha_1' = y_1' / \ell$$ $$\tan \gamma_1' = (1/2\sqrt{2})(s/\ell)\cos \alpha_1'$$ $$\cos \beta_1' = \frac{2\sqrt{2}\sin \gamma_1'}{s/\ell}$$ $$R_{\zeta_1 \beta_1}' = R_{\ell \beta_1}' \cos^2 \beta_1'$$ (5) Equation 5 gives the radiation intensity from points s_1 and s_4 at p' $$R_{1}^{1} = R_{4}^{1} = R_{\zeta_{1}\beta_{1}}^{1}$$ $$\tan \alpha_{2}^{1} = y_{2}^{1/\ell}$$ $$\tan y_{2}^{1} = (1/2\sqrt{2})(s/\ell) \cos \alpha_{2}^{1}$$ $$\cos \beta_{2}^{1} = \frac{2\sqrt{2} \sin y_{2}^{1}}{s/\ell}$$ $$R_{\zeta_{2}\beta_{2}}^{1} = R_{\ell\beta_{2}}^{1} \cos^{2} \beta_{2}^{1}$$ (6) Equation 6 gives the radiation intensity from points s₂ and s₃ at p' $$R_2^{t_1} = R_3^{t_1} = R_{\zeta_2 \otimes 2}^{t_1}$$ The (otal radiation intensity at p is $R_1^{-1} + R_2^{-1} + R_3^{-1} + R_4^{-1}$ Figure 1. Scheme for Calculation of Four-Point Source Radiation Pattern Figure 2. Calculation of Four-Point Source Radiation Pattern Along Two Axes (x and x') Figure 3. Diagrams for Calculation of Radiation Patterns of of Four-Point Sources 1250 Figure 4. Plot of Bremsstrahlung Intensity, Single-Point Source